Improved selectivity of an engineered multi-product terpene synthase.

نویسندگان

  • Ryan Lauchli
  • Julia Pitzer
  • Rebekah Z Kitto
  • Karolina Z Kalbarczyk
  • Kersten S Rabe
چکیده

Mutation of the sesquiterpene synthase Cop2 was conducted with a high-throughput screen for the cyclization activity using a non-natural substrate. A mutant of Cop2 was identified that contained three amino acid substitutions. This mutant, 17H2, converted the natural substrate FPP into germacrene D-4-ol with 77% selectivity. This selectivity is in contrast to that of the parent enzyme in which germacrene D-4-ol is produced as 29% and α-cadinol is produced as 46% of the product mixture. The mutations were shown to each contribute to this selectivity, and a homology model suggested that the mutations lie near to the active site though would be unlikely to be targeted for mutation by rational methods. Kinetic comparisons show that 17H2 maintains a kcat/KM of 0.62 mM(-1) s(-1), which is nearly identical to that of the parent Cop2, which had a kcat/KM of 0.58 mM(-1) s(-1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance

Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the...

متن کامل

The intelligent design of evolution

The debate between intelligent design and evolution in education may still rage in school boards and classrooms, but intelligent design is making headway in the laboratory. In this case, though, the designer turned out to be just some clever scientist. A recent paper in Nature (Yoshikuni et al, 2006) presented the iterative evolution of highly specific catalysts from a promiscuous wild-type enz...

متن کامل

Terpene synthases are widely distributed in bacteria.

Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any dete...

متن کامل

Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants.

The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms of these enzyme classes are described, and information on how terpene synthase proteins mediate catal...

متن کامل

A High-Throughput Colorimetric Screening Assay for Terpene Synthase Activity Based on Substrate Consumption

Terpene synthases catalyze the formation of a variety of terpene chemical structures. Systematic mutagenesis studies have been effective in providing insights into the characteristic and complex mechanisms of C-C bond formations and in exploring the enzymatic potential for inventing new chemical structures. In addition, there is growing demand to increase terpene synthase activity in heterologo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 12 23  شماره 

صفحات  -

تاریخ انتشار 2014